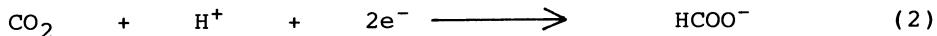
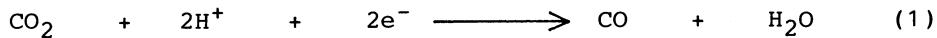


Photochemical CO_2 Reduction by an NADH Model Compound in the Presence of $[\text{Ru}(\text{bpy})_3]^{2+}$ and $[\text{Ru}(\text{bpy})_2(\text{CO})_2]^{2+}$ (bpy = 2,2'-bipyridine) in $\text{H}_2\text{O} / \text{DMF}$

Hitoshi ISHIDA, Koji TANAKA, and Toshio TANAKA*



Department of Applied Chemistry, Faculty of Engineering,
Osaka University, Suita, Osaka 565

Photochemical conversion of CO_2 to CO and HCOO^- was achieved by using an NADH model compound, 1-benzyl-1,4-dihydronicotinamide (BNAH), as an electron donor in the presence of $[\text{Ru}(\text{bpy})_3]^{2+}$ (bpy = 2,2'-bipyridine) and $[\text{Ru}(\text{bpy})_2(\text{CO})_2]^{2+}$ in $\text{H}_2\text{O} / \text{DMF}$. The quantum yields for the CO and HCOO^- formation attained 14.8 and 2.7%, respectively, in $\text{H}_2\text{O}/\text{DMF}$ (1:9 v/v).

Electrochemical^{1,2)} and photochemical³⁻⁵⁾ CO_2 reduction catalyzed by metal complexes has been of much interest. The selective formation of CO and HCOO^- in the electrochemical CO_2 reduction has been achieved by adjusting the acidity of the proton sources.¹⁾ On the other hand, the photochemical CO_2 reduction reported so far has been conducted under strong basic conditions by using triethanolamine as an electron donor, where the formation of CO and HCOO^- seems to depend on the nature of catalysts; Ru^{3,4)} complexes selectively afford HCOO^- , while an Re complex⁵⁾ gives only CO. Thus, photochemical CO_2 reduction under neutral protic conditions is desired in connection with the biochemical CO_2 fixation. Reduced nicotinamide adenine dinucleotide (NADH) functions as an electron donor in biological CO_2 fixation.⁶⁾ There have been extensive studies on the chemistry of 1,4-dihydronicotinamides as a model for NADH,⁷⁾ while no CO_2 reduction with an NADH model compound has been reported. This letter describes the first photochemical CO_2 reduction by an NADH model compound, 1-benzyl-1,4-dihydronicotinamide (BNAH), as an electron donor in $\text{H}_2\text{O}/\text{DMF}$ containing $[\text{Ru}(\text{bpy})_2(\text{CO})_2]^{2+}$ and $[\text{Ru}(\text{bpy})_3]^{2+}$.

Irradiation of visible light ($\lambda > 400$ nm) to CO_2 -saturated $\text{H}_2\text{O}/\text{DMF}$ (3:7 and 1:9 v/v) solutions containing $[\text{Ru}(\text{bpy})_3]\text{Cl}_2 \cdot 6\text{H}_2\text{O}$ (5.0×10^{-4} mol dm^{-3}),

$[\text{Ru}(\text{bpy})_2(\text{CO})_2](\text{PF}_6)_2$ (1.0×10^{-4} mol dm $^{-3}$), and BNAH (0.10 mol dm $^{-3}$) produces not only CO (Eq. 1) but also HCOO^- (Eq. 2).⁸ The result for the photochemical

reaction conducted in $\text{H}_2\text{O}/\text{DMF}$ with 3:7 v/v is illustrated in Fig. 1, which shows the amounts of products increasing with the lapse of time. The quantum yields for the CO and HCOO^- formation were $\phi_{\text{CO}} = 8.6\%$ and $\phi_{\text{HCOO}^-} = 1.9\%$ in $\text{H}_2\text{O}/\text{DMF}$ with 3:7 v/v, and $\phi_{\text{CO}} = 14.8\%$ and $\phi_{\text{HCOO}^-} = 2.7\%$ in $\text{H}_2\text{O}/\text{DMF}$ with 1:9 v/v.⁹ On the other hand, neither CO nor HCOO^- was produced in a CO_2 -saturated dry DMF under otherwise the same conditions,

suggesting that H_2O plays a role as a proton source in the present CO_2 reduction. In addition, the control experiments conducted in the absence of either one of $[\text{Ru}(\text{bpy})_3]^{2+}$, $[\text{Ru}(\text{bpy})_2(\text{CO})_2]^{2+}$, and BNAH in $\text{H}_2\text{O}/\text{DMF}$ (3:7 v/v) have also produced neither CO nor HCOO^- .

Thus, all the components are required to proceed the photochemical CO_2 reduction. The luminescence of $[\text{Ru}(\text{bpy})_3]^{2+*}$ has, however, not been quenched at all by $[\text{Ru}(\text{bpy})_2(\text{CO})_2]^{2+}$ at the present experimental concentrations of the latter (the order of 10^{-4} mol dm $^{-3}$) in DMF.

On the other hand, BNAH ($E^0(\text{BNAH}/\text{BNAH}^\ddagger) = +0.57$ V vs. SCE)¹⁰ reductively quenches the emitting excited state $[\text{Ru}(\text{bpy})_3]^{2+*}$ with $k_q = 2.0 \times 10^8$

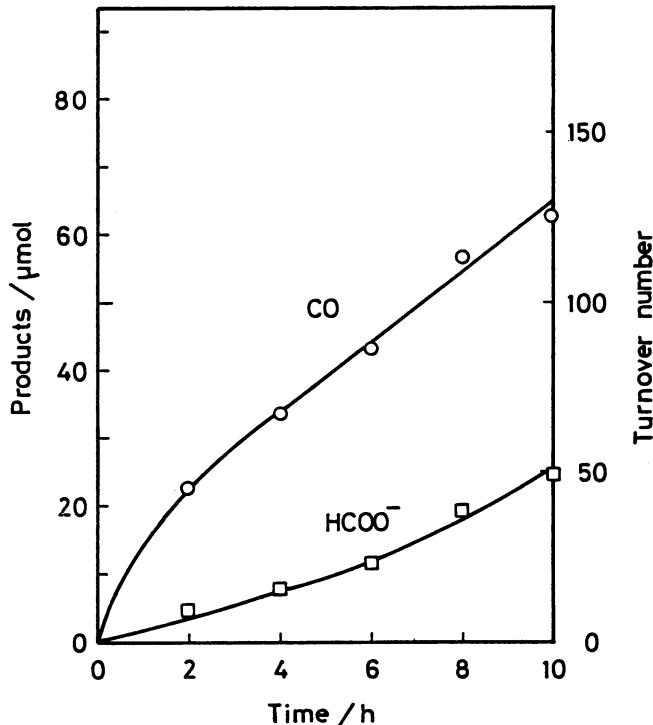
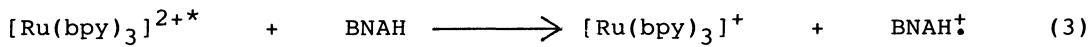
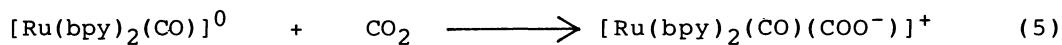
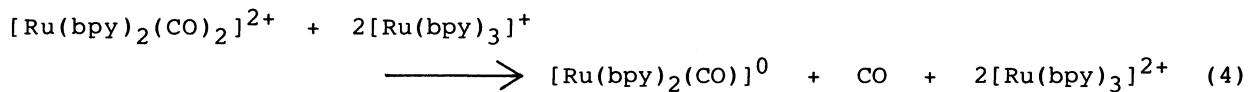
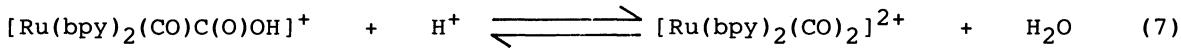
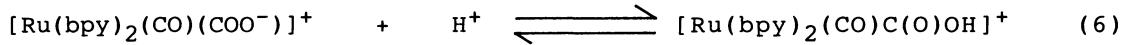





Fig. 1. Amounts of the products formed in the photochemical CO_2 reduction catalyzed by $[\text{Ru}(\text{bpy})_2(\text{CO})_2]^{2+}$ (1.0×10^{-4} mol dm $^{-3}$) in $\text{H}_2\text{O}/\text{DMF}$ (3:7 v/v) containing $[\text{Ru}(\text{bpy})_3]^{2+}$ (5.0×10^{-4} mol dm $^{-3}$) and BNAH (0.10 mol dm $^{-3}$); a 300 W-Hg lamp ($\lambda > 400$ nm).



$\text{mol}^{-1} \text{dm}^3 \text{ s}^{-1}$, affording $[\text{Ru}(\text{bpy})_3]^+$ and BNAH^\bullet (Eq. 3),¹¹⁾ the latter of

which is dimerized into $(\text{BNA})_2$ with releasing protons.¹²⁾ On the other hand, $[\text{Ru}(\text{bpy})_3]^+$ thus formed is a strong reducing agent with $E^0(\text{Ru}^+/\text{Ru}^{2+}) = -1.35 \text{ V vs. SCE}$,¹³⁾ which is very close to the potential (-1.30 V vs. SCE) applied for the CO_2 reduction by $[\text{Ru}(\text{bpy})_2(\text{CO})_2]^{2+}$ under the controlled potential electrolysis conditions.¹⁾ Thus, $[\text{Ru}(\text{bpy})_2(\text{CO})_2]^{2+}$ is stepwisely reduced by two moles of $[\text{Ru}(\text{bpy})_3]^+$ as an electron mediator to give a coordinatively unsaturated Ru complex $[\text{Ru}(\text{bpy})_2(\text{CO})]^0$ with releasing a CO molecule (Eq. 4), the former of which reacts with CO_2 to give a formally Ru^{II} complex $[\text{Ru}(\text{bpy})_2(\text{CO})(\text{COO}^-)]^+$ (Eq. 5), as

described in the electrochemical CO_2 reduction by $[\text{Ru}(\text{bpy})_2(\text{CO})_2]^{2+}$.¹⁾ The resulting $[\text{Ru}(\text{bpy})_2(\text{CO})(\text{COO}^-)]^+$ exists as an equilibrium mixture with $[\text{Ru}(\text{bpy})_2(\text{CO})\text{C}(\text{O})\text{OH}]^+$ and $[\text{Ru}(\text{bpy})_2(\text{CO})_2]^{2+}$ (Eqs. 6 and 7), both of which are

further reduced by $[\text{Ru}(\text{bpy})_3]^+$ to regenerate $[\text{Ru}(\text{bpy})_2(\text{CO})]^0$ with affording HCOO^- and CO, respectively.¹⁾ In view of the fact that the electrochemical CO_2 reduction by $[\text{Ru}(\text{bpy})_2(\text{CO})_2]^{2+}$ in acidic conditions (pH 6.0) yields CO selectively,¹⁾ the formation of CO as the main product in the present photochemical CO_2 reduction in $\text{H}_2\text{O}/\text{DMF}$ may be interpreted in terms of acceleration of the conversion not only from $[\text{Ru}(\text{bpy})_2(\text{CO})(\text{COO}^-)]^+$ to $[\text{Ru}(\text{bpy})_2(\text{CO})\text{C}(\text{O})\text{OH}]^+$ (Eq. 6) but also from $[\text{Ru}(\text{bpy})_2(\text{CO})\text{C}(\text{O})\text{OH}]^+$ to $[\text{Ru}(\text{bpy})_2(\text{CO})_2]^{2+}$ (Eq. 7) by water. This is consistent with the fact that the similar photochemical CO_2 reduction conducted in the presence of a basic electron donor triethanolamine (0.10 mol dm^{-3}) in DMF and in $\text{H}_2\text{O}/\text{DMF}$ (1:9 v/v) containing $[\text{Ru}(\text{bpy})_3]^{2+}$ (5.0×10^{-4} mol dm^{-3})

dm^{-3}) and $[\text{Ru}(\text{bpy})_2(\text{CO})_2]^{2+}$ (1.0×10^{-4} mol dm^{-3}) selectively affords HCOO^- with quantum yields 2 and 1%, respectively.¹⁴⁾ Thus, BNAH is superior to triethanolamine as an electron donor in the photochemical CO_2 reduction.

This work was supported by General Sekiyu Research & Development Encouragement & Assistance Foundation.

References

- 1) H. Ishida, K. Tanaka, and T. Tanaka, *Organometallics*, **6**, 181 (1987); H. Ishida, H. Tanaka, K. Tanaka, and T. Tanaka, *J. Chem. Soc., Chem. Commun.*, **1987**, 131.
- 2) M. Beley, J.-P. Collin, R. Ruppert, and J.-P. Sauvage, *J. Am. Chem. Soc.*, **108**, 7461 (1986); M. Nakazawa, Y. Mizobe, Y. Matsumoto, Y. Uchida, M. Tezuka, and M. Hidai, *Bull. Chem. Soc. Jpn.*, **59**, 809 (1986); D. L. DuBois and A. Miedarner, *J. Am. Chem. Soc.*, **109**, 113 (1987); J. Hawecker, J.-M. Lehn, and R. Ziessel, *J. Chem. Soc., Chem. Commun.*, **1984**, 328; S. Slater and J. H. Wagenknecht, *J. Am. Chem. Soc.*, **106**, 5367 (1984).
- 3) H. Ishida, K. Tanaka, and T. Tanaka, *Chem. Lett.*, **1987**, 1035.
- 4) J. Hawecker, J.-M. Lehn, and R. Ziessel, *J. Chem. Soc., Chem. Commun.*, **1985**, 56; N. Kitamura and S. Tazuke, *Chem. Lett.*, **1983**, 1109.
- 5) J. Hawecker, J.-M. Lehn, and R. Ziessel, *J. Chem. Soc., Chem. Commun.*, **1983**, 536.
- 6) D. I. Arnon, "Bioorganic Chemistry IV," ed by E. E. van Tamelen, Academic Press, New York (1978), p. 4.
- 7) S. Fukuzumi, K. Hironaka, and T. Tanaka, *J. Am. Chem. Soc.*, **105**, 4722 (1983), and references therein.
- 8) Photochemical CO_2 reductions were conducted in a septum capped Pyrex tube under irradiation of visible light ($\lambda > 400$ nm; a 300 W-Hg lamp equipped with an NaNO_2 chemical filter). CO and HCOO^- were determined by a gaschromatograph and an isotachophoretic analyser, respectively.
- 9) The quantum yield was determined by an Ushio model UI-501 xenon lamp through a Toshiba glass filter Y-43 ($\lambda > 400$ nm). Potassium ferrioxalate was used as an actinometer.
- 10) S. Fukuzumi, S. Koumitsu, K. Hironaka, and T. Tanaka, *J. Am. Chem. Soc.*, **109**, 305 (1987).
- 11) The k_q value was determined in DMF; C. Pac, Y. Miyauchi, O. Ishitani, M. Ihama, M. Yasuda, and H. Sakurai, *J. Org. Chem.*, **49**, 26 (1984).
- 12) The formation of 4,4'- and 4,6'-linked BNA dimers were confirmed by comparison with the authentic samples in the liquid chromatography; Y. Ohnishi and M. Kitami, *Bull. Chem. Soc. Jpn.*, **52**, 2674 (1979).
- 13) R. Ballardini, G. Varani, M. T. Indelli, F. Scandola, and V. Balzani, *J. Am. Chem. Soc.*, **100**, 7219 (1978).
- 14) The decrease in the amount of HCOO^- formed in $\text{H}_2\text{O}/\text{DMF}$ (1:9 v/v) compared with that in DMF may be caused by the protonation to triethanolamine ($\text{pK}_a = 7.9$) in the former.

(Received November 6, 1987)